Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study

Zahra Najafi a,b, Mohammad Mahdavi c, Mina Saeedi d,e, Elahe Karimpour-Razkenari e, Najmeh Edraki f, Mohammad Sharifzadeh g, Mahnaz Khanavi h, Tahmineh Akbarzadeh a,e,*

a Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
b Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
c Institute of Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
d Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
e Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
f Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
g Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
h Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran

ARTICLE INFO

This paper is dedicated to our wonderful teacher in chemistry and medicinal chemistry, Professor Abbas Shafiee (1937–2016).

Keywords: Alzheimer’s disease
Tarcine-Coumarins
1,2,3-Triazole
Docking study
Dual binding site
Morris water maze

ABSTRACT

A new series of tacrine-coumarin hybrids linked to 1,2,3-triazole were designed, synthesized, and tested as potent dual binding site cholinesterase inhibitors (ChEIs) for the treatment of Alzheimer’s disease (AD). Among them, compound 8e was the most potent anti-AChE derivative (IC50 = 27 nM) and compound 8m displayed the best anti-BChE activity (IC50 = 6 nM) much more active than tacrine and donepezil as the reference drugs. Compound 8e was also evaluated for its BACE1 inhibitory activity and neuroprotectivity against PC12 cells exposed to Aβ25-35 which indicated low activity. Finally, in vivo studies by Morris water maze task showed that compound 8e significantly reversed scopolamine-induced memory deficit in rats.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia worldwide [1,2]. The cause of AD is still unclear and has been described by the several reasons such as genetic factors [3–5], amyloid-β peptides aggregation [6], neurofibrillary tangles (NFTs) [7], cholinergic hypofunction, oxidative stress [8], metal ion dyshomeostasis [9], and inflammation [10], etc. Among them, the cholinergic hypofunction has been known as one of the significant causes of AD [11]. Acetylcholine (ACh) plays an important role in attention, learning, memory and motivation. One of the main ways to increase ACh level in the brain is inhibition of cholinesterase enzymes (ChEs). There are two ChEs known as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that catalyze the hydrolysis of ACh. In the healthy brain, AChE has predominant activity in terminating ACh-mediated neurotransmission whereas BChE acts as the secondary enzyme [12,13]. In patients with AD, a misbalance takes place between AChE and BChE so that the activity of AChE does not change or decreases whereas BChE activity significantly increases. Therefore, it seems that both enzymes are involved in regulating of the ACh level and considered as valuable therapeutic targets against AD. As a result, dual inhibition of AChE and BChE enzymes would be more useful for AD patients in the late stages of disease than AChE selective inhibitors.

The crystal structural studies of both AChE and BChE enzymes revealed that they possess two binding sites including the catalytic site (CS) and peripheral anionic site (PAS) [14,15]. However, they have shown high binding affinity towards substrates and inhibitors. The main difference between them is associated with acyl binding site (ABS) in such a manner that of BChE is significantly bigger than of AChE. It seems that stimulatory inhibition of CS and PAS affords inhibitors that are more potent. In addition, recent evidences suggested that the PAS of AChE plays key roles in Aβ-aggregation [16,17]. Also, BChE knockout animal model showed diminished fibrillar Aβ plaque deposition suggesting that the lack of BChE reduces deposition of fibrillar Aβ in AD [18]. Consequently, a great deal of attention has been paid to the

* Corresponding author at: Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
E-mail address: akbarzad@tums.ac.ir (T. Akbarzadeh).
https://doi.org/10.1016/j.bioorg.2018.10.056
Received 16 August 2018; Received in revised form 10 October 2018; Accepted 27 October 2018
Available online 28 October 2018
0045-2068/ © 2018 Published by Elsevier Inc.
development of dual AChE and BChE inhibitors to increase inhibitory activity via increasing the ligand-target interaction. According to the literature, tacrine has been found as a specific inhibitor of the catalytic anionic site (CAS) of CS whereas coumarin has affinity for the PAS of ChEs [19,20]. All structures demonstrated in Fig. 1(A–D) showed the importance of coumarin and tacrine scaffolds in the development of ChEs [20–22].

Based on the above mentioned reports and in continuation of our work on the synthesis and evaluation of anti-Alzheimer’s compounds [23,24], we designed and synthesized novel hybrid tacrine-coumarin-1,2,3-triazoles which prepared through click chemistry approach (Scheme 1). All compounds 8a-r were evaluated for their in vitro and in vivo anti-Alzheimer’s activity.

2. Results and discussion

2.1. Chemistry

The desired compounds 8a-r were obtained by the reaction sequence illustrated in Scheme 1. The reaction of anthranilic acid derivatives 1a-c and cyclohexanone 2 in refluxing POCl3 for 3 h gave 1,2,3,4-tetrahydroacridine derivatives 3a-c [25,26]. Compounds 3a-c were treated with propargylamine in phenol at 100 °C for 2 h to afford propargylated acridine derivatives 4a-c [27]. Further reaction series is associated with preparation of desired azide derivatives 7a-f. For this purpose, coumarin 5a was commercially obtained from Merck and 4-methyl-7-hydroxycoumarin (5b) was prepared by Pechmann reaction via the condensation of resorcinol and ethylacetoacetate in the presence of concentrated sulfuric acid [28]. Compounds 5a-b were reacted with different dibromoalkanes in the presence of anhydrous potassium carbonate in acetonitrile at 80 °C for 4 h to give compounds 6a-f [29–31]. Compounds 7a-f [32,33] were obtained by the reaction of compounds 6a-f with sodium azide in ethanol. After evaporation of solvent, the residue was used for the next step without purification. Finally, desired products 8a-r were prepared by click reaction of compounds 4a-c with azide derivatives 7a-f in H2O/t-ButOH (1:1) in the presence of Et3N along with a catalytic amount of Cul at room temperature for 12–24 h [23].

The structure of all synthesized compounds was confirmed using 1H NMR and 13CNMR spectroscopy. They were in good agreement with those expected chemical shifts and coupling patterns. For example, 1HNMR spectrum of compound 8e showed eight protons belonging to four methylene groups of 1,2,3,4-tetrahydroacridine moiety around 1.86, 2.69, and 3.01 ppm as multiplet and triplet signals. The presence of methyl group and three methylene linker protons were confirmed by multiplet signal around 2.36–2.41 ppm and triplet signals at 3.98 and 4.54 ppm. Also, methylene group protons connected to NH was depicted as a singlet signal at 4.68 ppm. Singlet proton related to proton at 3-position of coumarin was observed at 6.13 ppm and accordingly H 5, H 6, and H 8 of coumarin moiety were observed at 7.47, 6.78, and 6.74 ppm as doublet, doublet of doublet, and doublet signals, respectively with desired coupling constants. The H 5, H 7, and H 8 of 1,2,3,4-tetrahydroacridine moiety were distinguished at 7.89, 7.27, and 7.90 ppm as singlet, doublet, and doublet signals, respectively. Finally, the existence of proton belonging to 1,2,3-triazole moiety was observed at 7.26 ppm as a singlet signal. Moreover, 13CNMR spectrum confirmed nine aliphatic, nineteen aromatic, and a carbonyl group distinct resonances.

2.2. Pharmacology

2.2.1. AChE and BChE inhibitory activity

The in vitro AChE and BChE inhibitory activity of all synthesized compounds 8a-r was evaluated using modified Ellman’s method [34] and compared with tacrine and donepezil as the reference drugs (Table 1). All data were presented as the mean ± SD of three independent experiments. Among the synthesized compounds 8a-r, the most potent anti-AChE and anti-BChE activities were related to compounds 8e (IC50 = 0.027 µM) and 8m (IC50 = 0.006 µM), respectively.

In all designed compounds, 1,2,3,4-tetrahydroacridine and coumarin cores were connected by methylene groups and 1,2,3-triazole moiety. Synthesized compounds 8a-r can be divided into three series based on the length of methylene linker: 8a-f, 8g-l, and 8m-r possessing three, four and five methylene groups, respectively.

In the case of AChEI activity, compound 8e belonging to the first series having Cl at 6-position of 1,2,3,4-tetrahydroacridine and methyl at 4-position of coumarin exhibited the best anti-AChE activity with IC50 value of 0.027 µM, more potent than tacrine and donepezil with IC50 value of 0.048 and 0.039 µM, respectively. Changing the position of Cl significantly decreased the anti-AChE activity in compound 8f.
(IC$_{50}$ = 1.674 µM), however deletion of Cl in compound 8d led to the decrease of activity in comparison to compound 8f in such a manner that the order of activity was 8e > 8d > 8f. Considering the inhibitory activity of compounds 8a, 8b, and 8c in the first series of compounds revealed that the presence of Cl at 6-position of tetrahydroacridine moiety plays important role as compound 8b showed AChEI activity with IC$_{50}$ = 0.056 µM. Also, it was found that the presence of methyl group at 4-position of coumarin moiety is remarkable and similar order of activity was observed for 8b > 8a > 8c. It was clear that the lack of methyl group in compounds 8a, 8b, and 8c led to the decrease of activity comparing with their counterparts 8d, 8e, and 8f.

In the second series of synthesized compounds (8g-l) having linker with four methylene groups, compounds 8g, 8h, 8j, and 8k were found to be strong toward AChE since the following IC$_{50}$s = 0.046, 0.044, 0.066, and 0.068 µM were calculated, respectively. In this series of compounds, the presence of Cl at 6-position of tetrahydroacridine moiety as well as lack of Cl significantly affected anti-AChE activity. However, the presence of Cl at 7-position of tetrahydroacridine moiety deteriorated AChEI activity in compounds 8i and 8l (IC$_{50}$s = 1.829 and 0.614 µM). Also, the presence of methyl played no important role.

Considering our results obtained from the third series of compounds (8m-r) confirmed similar anti-AChE activity as observed for the first series (8a-f). As expected the presence of Cl at 6-position of tetrahydroacridine moiety and methyl at 4-position of coumarin increased AChEI activity since compounds 8m, 8n, and 8o showed IC$_{50}$s = 0.095, 0.052, and 0.738 µM whereas their counterparts, compounds 8p, 8q, and 8r showed IC$_{50}$s = 0.050, 0.039, and 0.273 µM, respectively.

To sum up, SAR studies showed that anti-AChE activity was completely affected by the absence and presence of Cl and Me groups as...
of 0.078 µM which was more active than its counterpart. According to the presence of Me group which has not affected inhibitory activity in compounds lacking Cl and Me groups as well as the length of methylene linker play complex role in the inhibition of BChE and the effect of linker length cannot be considered as a single factor. It is only clear that chlorine-containing compounds at 7-position of tacrine moiety induced less inhibitory activity than compounds possessing Cl at 6-position or lacking substituent. However, substituents on the tacrine moiety in the third series of compounds affected inhibitory activity in the following order: H > 6-Cl > 7-Cl. Also, the presence of methyl group at 4-position of coumarin structure decreased the inhibitory activity in compounds possessing Cl at 6-position of 1,2,3,4-tetrahydroacridine moiety except compound 8r.

In the second category of compounds (8a-f), compounds 8c and 8f possessing Cl at 7-position of tetrahydroacridine moiety depicted no activity (IC_{50} > 10) and compound 8a lacking Cl and Me groups showed the best BChEI activity (IC_{50} = 0.032 µM). Introduction of Cl into 6-position (compound 8b) and insertion of Me at 4-position of coumarin (compound 8d) decreased activity with IC_{50}s = 0.328 and 0.450 µM. However, introduction of Cl along with Me into the desired positions (compound 8e) showed better inhibitory activity (IC_{50} = 0.104 µM) than compounds 8b and 8d.

In the second category of compounds 8 (8g-l), the best anti-BChE activity was depicted by compound 8h having Cl at 6-position of tetrahydroacridine moiety, however, its counterpart 8k having methyl group on the coumarin moiety demonstrated lower activity (IC_{50} = 0.320 µM). Also, compound 8j showed high activity with IC_{50} of 0.078 µM which was more active than its counterpart 8g (IC_{50} = 0.133 µM). Instructive point refers to compounds 8i and 8l which showed good activity (IC_{50}s = 1.247 and 0.487 µM, respectively) comparing with their analogs in the first series (8c and 8f) which were inactive toward BChE. However, the presence of Cl at 6-position of tetrahydroacridine moiety depicted higher BChEI activity than those compounds possessing Cl at 7-position.

In the third series of compounds (8m-r), compound 8m was the most potent anti-BChE derivative even the most potent compound in the series 8. However, insertion of Cl at 6- or 7-position of tetrahydroacridine moiety decreased the inhibitory activity of compounds 8n and 8o with IC_{50}s of 0.070 and 1.455 µM, respectively. It should be noted that compounds 8p-r showed lower activity than their counterparts of 8m-o, IC_{50}s = 0.038, 0.123, and 3.923 µM, respectively. Hence, derivatives lacking methyl group induced better inhibitory activity than those having that group.

It can be concluded that anti-BChE activity in the first and second groups followed no regularity. Absence and presence of Cl and Me groups as well as the length of methylene linker play complex role in the inhibition of BChE and the effect of linker length cannot be considered as a single factor. It is only clear that chlorine-containing compounds at 7-position of tacrine moiety induced less inhibitory activity than compounds possessing Cl at 6-position or lacking substituent. However, substituents on the tacrine moiety in the third series of compounds affected inhibitory activity in the following order: H > 6-Cl > 7-Cl. Also, the presence of methyl group at 4-position of coumarin usually diminished anti-BChE activity compared with unsubstituted coumarin.

Finally, the affinity of compounds 8b, 8e, 8k, 8q, and 8r for AChE was considered by the selectivity index of 5.857, 3.852, 4.706, 3.154, and 14.370, respectively. It was clear that compounds containing chlorine at 6-position of 1,2,3,4-tetrahydroacridine moiety except compound 8r and methyl group at 4-position of coumarin structure except compound 8b had high affinity for AChE. Also, compounds 8a, 8g, and 8m showed affinity to BChE by the selectivity index of 5.500, 2.891, and 15.833, respectively. It should be noted that these compounds contained unsubstituted 1,2,3,4-tetrahydroacridine with three, four, and five methylene linkers, respectively. In all series, compounds

Table 1

The IC_{50} values of the compounds 8a-r against AChE and BChE.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound 8</th>
<th>n</th>
<th>R</th>
<th>X</th>
<th>Y</th>
<th>AChEI [IC_{50} (µM)]</th>
<th>BChEI [IC_{50} (µM)]</th>
<th>Selectivity index AChE/BChE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8a</td>
<td>1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>0.176 ± 0.007</td>
<td>0.032 ± 0.011</td>
<td>0.104 5.500</td>
</tr>
<tr>
<td>2</td>
<td>8b</td>
<td>1</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>0.056 ± 0.011</td>
<td>0.328 ± 0.027</td>
<td>0.171 5.857</td>
</tr>
<tr>
<td>3</td>
<td>8c</td>
<td>1</td>
<td>H</td>
<td>Cl</td>
<td>Cl</td>
<td>1.775 ± 0.024</td>
<td>≥10</td>
<td>– –</td>
</tr>
<tr>
<td>4</td>
<td>8d</td>
<td>1</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>0.474 ± 0.013</td>
<td>0.450 ± 0.008</td>
<td>0.949 1.053</td>
</tr>
<tr>
<td>5</td>
<td>8e</td>
<td>1</td>
<td>Me</td>
<td>Cl</td>
<td>H</td>
<td>0.027 ± 0.009</td>
<td>0.104 ± 0.018</td>
<td>3.852 0.260</td>
</tr>
<tr>
<td>6</td>
<td>8f</td>
<td>1</td>
<td>Me</td>
<td>H</td>
<td>Cl</td>
<td>1.674 ± 0.017</td>
<td>≥10</td>
<td>– –</td>
</tr>
<tr>
<td>7</td>
<td>8g</td>
<td>2</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>0.046 ± 0.021</td>
<td>0.133 ± 0.009</td>
<td>0.346 2.891</td>
</tr>
<tr>
<td>8</td>
<td>8h</td>
<td>2</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>0.044 ± 0.014</td>
<td>0.060 ± 0.004</td>
<td>1.364 0.767</td>
</tr>
<tr>
<td>9</td>
<td>8i</td>
<td>2</td>
<td>H</td>
<td>Cl</td>
<td>Cl</td>
<td>1.829 ± 0.031</td>
<td>1.247 ± 0.041</td>
<td>0.682 1.467</td>
</tr>
<tr>
<td>10</td>
<td>8j</td>
<td>2</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>0.066 ± 0.005</td>
<td>0.078 ± 0.010</td>
<td>1.182 0.846</td>
</tr>
<tr>
<td>11</td>
<td>8k</td>
<td>2</td>
<td>Me</td>
<td>Cl</td>
<td>H</td>
<td>0.068 ± 0.009</td>
<td>0.320 ± 0.005</td>
<td>4.706 0.212</td>
</tr>
<tr>
<td>12</td>
<td>8l</td>
<td>2</td>
<td>Me</td>
<td>H</td>
<td>Cl</td>
<td>0.614 ± 0.029</td>
<td>0.487 ± 0.010</td>
<td>1.261 0.793</td>
</tr>
<tr>
<td>13</td>
<td>8m</td>
<td>3</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>0.095 ± 0.014</td>
<td>0.006 ± 0.002</td>
<td>0.603 15.833</td>
</tr>
<tr>
<td>14</td>
<td>8n</td>
<td>3</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>0.052 ± 0.026</td>
<td>0.070 ± 0.016</td>
<td>1.346 0.743</td>
</tr>
<tr>
<td>15</td>
<td>8o</td>
<td>3</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>0.738 ± 0.022</td>
<td>1.455 ± 0.078</td>
<td>1.971 0.507</td>
</tr>
<tr>
<td>16</td>
<td>8p</td>
<td>3</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>0.050 ± 0.033</td>
<td>0.038 ± 0.004</td>
<td>0.760 1.316</td>
</tr>
<tr>
<td>17</td>
<td>8q</td>
<td>3</td>
<td>Me</td>
<td>Cl</td>
<td>H</td>
<td>0.039 ± 0.021</td>
<td>0.123 ± 0.017</td>
<td>3.154 0.317</td>
</tr>
<tr>
<td>18</td>
<td>8r</td>
<td>3</td>
<td>Me</td>
<td>H</td>
<td>Cl</td>
<td>0.273 ± 0.012</td>
<td>3.923 ± 0.029</td>
<td>14.370 0.069</td>
</tr>
<tr>
<td>19</td>
<td>Tacrine</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.048 ± 0.011</td>
<td>0.010 ± 0.004</td>
<td>0.208 4.600</td>
</tr>
<tr>
<td>20</td>
<td>Donepezil</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.039 ± 0.047</td>
<td>8.416 ± 0.628</td>
<td>215.795 0.005</td>
</tr>
</tbody>
</table>

\(^a\) Inhibitor concentration (mean ± SD of three experiments) required for 50% inactivation of AChE and BChE.
\(^b\) Selectivity for AChE is defined as IC_{50}(BChE)/IC_{50}(AChE).
\(^c\) Selectivity for BChE is defined as IC_{50}(AChE)/IC_{50}(BChE).
2.2.2. Kinetic studies of AChE and BChE inhibition

The most active compounds toward AChE (8e) and BChE (8m) were selected for kinetic studies of enzymes inhibition using Lineweaver-Burk plots in the presence of inhibitors (three concentrations) and their absence [24,34]. As can be seen in Fig. 2, graphical analysis of the reciprocal Lineweaver-Burk plots showed both increasing slopes (decreased V_{max}) and intercepts (increased K_{max}) at increasing concentration of both compounds 8e and 8m (Fig. 2A and 2B, respectively). The reciprocal plots confirmed mixed type of inhibition for both AChE and BChE suggesting that compounds 8e and 8m were able to bind both the CAS and PAS of the AChE and BChE. As seen in Fig. 3A and B, the inhibition constants Ki were calculated for compounds 8e and 8m from the secondary plots of the slope versus the concentration of inhibitors (0.061 µM and 0.010 µM, respectively).

2.2.3. BACE1 enzyme inhibitory activity of compound 8e

BACE1 (β-site APP-cleaving enzyme 1) is considered to be involved in the construction of Aβ peptides. Thus, compound 8e was selected to be evaluated against BACE1 inhibition [35]. All experiments were repeated for three times and compared with OM99-2. Table 2 indicated that compound 8e showed moderate inhibitory activity against BACE1 with the percent inhibition of 28.69 and 13.97 at 50 and 10 µM, respectively.

2.2.4. Protection of neuronal PC12 cells against Aβ-induced damage

Neuroprotection effect of compound 8e against PC12 cells exposed to Aβ25-35 was investigated by MTT assay to obtain insight about its neuroprotective properties [35]. Compound 8e with range concentration of 0.5 to 12.5 µM did not fully protect PC12 cells from neurotoxic effect of Aβ25-35 at concentration of 5 µM.

2.3. Docking studies

To investigate the possible interaction modes between active sites of ChEs and the most active compounds, the molecular docking simulations were performed by AutoDock 4.2 and Autodock Vina (AV) 1.1.1 programs [36] with Discovery Studio 4.0 client as shown in Figs. 4–8. The X-ray crystal structures of bifunctional inhibitor bis(7)-tacrine complexed with Torpedo californica AChE (PDB Code: 2CKM) and human butyrylcholinesterase in complex with tacrine (PDB Code: 4BDS) were selected to study the molecular modeling [37,38].

The molecular docking studies were carried out for compounds 8e (IC50 = 0.027 µM), 8h (IC50 = 0.044 µM), and 8q (IC50 = 0.039 µM) as potent AChEIs and compounds 8a (IC50 = 0.032 µM), 8h (IC50 = 0.060 µM), and 8m (IC50 = 0.006 µM) as potent BChEIs (Figs. 4–7).

In the case of AChE inhibition, our results showed that the orientation of all three compounds were completely similar to native ligand of crystallography (bis(7)-tacrine) with docking score of -13.83, -13.32, and -13.71 kcal/mol for compounds 8e, 8h, and 8r, respectively.
In the case of BChE activity, compounds \(8a\) (IC\(_{50} = 0.032 \mu M\)), \(8h\) (IC\(_{50} = 0.060 \mu M\)), and \(8m\) (IC\(_{50} = 0.006 \mu M\)) were selected for the molecular docking studies and docking scores were obtained \(-10.4\), \(-10.5\), and \(-10.5\) kcal/mol, respectively with docking score of \(-8.0\) kcal/mol for native ligand of crystallography tacrine (IC\(_{50} = 0.010 \mu M\)). All compounds were inserted into the active site of BChE and displayed similar interaction mode in the active site of BChE. They demonstrated the same orientation of tacrine as the native ligand (Fig. 6).

Fig. 7 displayed binding mode of the most potent anti-BChE compound \(8m\) in the active site cleft. The 1,2,3,4-tetrahydroacridine core was located in hydrophobic cavity interacting with amino acid residues Trp82 and Ala328. It made a remarkable \(\pi-\pi\) interaction with the Trp82 of the CAS. The coumarin core was fitted into ABS of the CS. It displayed \(\pi-\pi\) and hydrophobic interactions with Trp231 and Leu286. The 1,2,3-triazole ring was oriented directly to the PAS and created an anion-\(\pi\) interaction with Asp70. Also, nitrogen of 1,2,3-triazole ring formed hydrogen bonds with NH of backbone.

2.4. Morris water maze test (MWM)

To evaluate the effect of compound \(8e\) (the most potent in vitro anti-AChE) on memory restoration in scopolamine-induced amnesia [39], the Morris water maze (MWM) test was performed as described in our previous report [24,40]. Scopolamine is a muscarinic cholinergic receptor antagonist which is used to induce memory impairments in animal models. Eleven groups were studied by MWM consisting of a group that received normal saline 5 mL/kg, a vehicle group that received 20% polyethylene glycol 400 (PEG 400), a group that received scopolamine 4 mg/kg, groups that received compound \(8e\) with doses of 0.3, 0.6, 1.25, 2.5, 5, 10 mg/kg, and two groups that received donepezil 1.25 and 2.5 mg/kg (positive control group). Each rat was subjected to the trial four times (each 90 s) per day for 4 consecutive days in the water maze task to find hidden platform (training days). As shown in Fig. 8A–C, we evaluated results in terms of escape latency time in Fig. 8A (the time required to find the platform), traveled distance in Fig. 8B (the distance required to find the platform), and swimming speed in Fig. 8C. On the fifth day of the trial (post training probe trial test), platform was removed from the pool and memory was assessed in term of time spent in the target quadrant (Q1) (Fig. 9).

2.4.1. Effects of compound \(8e\) administration on escape latency, traveled distance and swimming speed average for all training days

The escape latency (8A), traveled distance (8B) and swimming speed (8C) for all groups in the first 4 days of trials has been shown in Fig. 8. The scopolamine injection produced the significant increase of escape latency (\(P < 0.01\)) (Fig. 8A) and traveled distance (\(P < 0.001\)) (Fig. 8B) compared with the saline control. As seen in Fig. 8A and 8B, those groups that received compound \(8e\) plus scopolamine showed significant improvement in escape latency and traveled distance in comparison to scopolamine administered group. The groups treated with compound \(8e\) displayed decrease of escape latency including compound \(8e\) (10 mg/kg) plus scopolamine: \(P < 0.01\); compound \(8e\) (5 mg/kg) plus scopolamine: \(P < 0.01\); compound \(8e\) (2.5 mg/kg) plus scopolamine: \(P < 0.01\); compound \(8e\) (1.25 mg/kg) plus scopolamine: \(P < 0.01\); compound \(8e\) (0.6 mg/kg) plus scopolamine: \(P < 0.05\); compound \(8e\) (0.3 mg/kg) plus scopolamine: \(P < 0.05\) in comparison to the scopolamine group (Fig. 8A). The same results were obtained for the traveled distance. The administration of compound \(8e\) led to significantly decrease in the traveled distance in three groups compared to the scopolamine group (Fig. 8B) (compound \(8e\) (10 mg/kg) plus scopolamine: \(P < 0.001\); compound \(8e\) (5 mg/kg) plus scopolamine: \(P < 0.01\); compound \(8e\) (2.5 mg/kg) plus scopolamine: \(P < 0.001\) and compound \(8e\) (1.25 mg/kg) plus scopolamine: \(P < 0.05\)). However, the compound \(8e\) did not significantly restore the traveled distance with doses of 0.6 and 0.3 mg/kg. It should be noted comparing with docking score of \(-13.79\) kcal/mol for native ligand of crystallography bis(7)-tacrine. Docking scoring showed a good correlation with experimental results as docking score of the most active compound \(8e\) (IC\(_{50} = 0.027 \mu M\)) is slightly more negative than weaker inhibitors \(8h\) (IC\(_{50} = 0.044 \mu M\)) and \(8r\) (IC\(_{50} = 0.039 \mu M\)). All three compounds \(8e\), \(8h\), and \(8r\) were long enough to be accommodated in the PAS and CS of the AChE. As can be seen in Fig. 5, the 1,2,3,4-tetrahydroacridine moiety in compound \(8e\) was placed in the CAS and PAS and created the hydrogen bonds with NH of backbone.

Table 2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Inhibition at 50 µM*</th>
<th>Inhibition at 10 µM*</th>
<th>IC(_{50}) (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(8e)</td>
<td>28.69 ± 4.79</td>
<td>13.97 ± 12.99</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>OM99-2</td>
<td>–</td>
<td>–</td>
<td>14.7 ± 2.83</td>
</tr>
</tbody>
</table>

* Values represent means ± standard error (S.E.) of three independent experiments.

![Graph](image.png)

Fig. 3. The Lineweaver-Burk secondary plots of compounds \(8e\) (A) and \(8m\) (B).
that swimming speed did not show significant changes in all the groups as shown in Fig. 8C.

2.4.2. Effects of 8e administration on post training probe trial test

The post-training probe trial test was performed after training days on the fifth day. We left the trained animals in the water for 90 s while the platform was removed and memory was evaluated in term of time spent in the target quadrant (Q1). As seen in Fig. 9, this parameter was significantly decreased for the group that received scopolamine in comparison to the control group ($P < 0.001$) and significantly increased for the groups that received compound 8e (compound 8e (10 mg/kg) plus scopolamine: $P < 0.01$; compound 8e (5 mg/kg) plus scopolamine: $P < 0.001$, compound 8e (2.5 mg/kg) plus scopolamine: $P < 0.01$), compound 8e (1.25 mg/kg) plus scopolamine: $P < 0.001$), compound 8e (0.6 mg/kg) plus scopolamine: $P < 0.01$) and compound 8e (0.3 mg/kg) plus scopolamine: $P < 0.05$) in comparison to scopolamine group. Also, donepezil plus scopolamine groups with doses of 2.5 and 1.25 mg/kg were applied as positive control and compounds 8e created significant memory improvement similar to donepezil groups.

3. Conclusion

In conclusion, we reported design and synthesis of a novel series of tacrine-coumarin hybrids linked to 1,2,3-triazoleas potent anti-ChEs. All synthesized compounds showed remarkable inhibitory activity

Fig. 4. Superimposition of compounds 8e (yellow), 8h (orange), 8q (red), and bis(7)-tacrine (dark gray) in the active site of AChE.

Fig. 5. The binding mode of the most active compound 8e in the active site of AChE. Hydrogen bonds between carbonyl of coumarin and backbone of Trp279 is shown as green dotted line. Anion-π interaction between Asp72 and 1,2,3-triazole ring is presented as black dotted line. Hydrophobic and π-π interactions are shown as violet dotted lines.

Fig. 6. Proposed binding mode of compounds 8a (green), 8h (cyan), 8m (violet) and tacrine (yellow) in the active site of BChE.
Fig. 7. The binding interaction of the most potent anti-BChE compound 8m in the cleft of BChE. Hydrogen bonding is shown as green dotted line. Hydrophobic and π-π interactions are shown as violet dotted lines.

Fig. 8. Effect of compound 8e plus scopolamine, scopolamine, donepezil, vehicle and saline (control) groups on (A) escape latency, (B) traveled distance and (C) swimming speed in MWM test. Each column displays the mean ± SEM for seven rats. Sco, scopolamine; * Significantly different from scopolamine groups. # Significantly different from control group. * P < 0.05; ** P < 0.01; ****, #### P < 0.001.
was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate/methanol (1:8:1) as eluent in 48–68% yield.

4.1.2.1. 7-(3-((1,2,3,4-tetrahydroacridin-9-yl)(methyl)-1H-1,2,3-triazol-1-yl)propoxy)-2H-chromen-2-one (8a). White solid; yield: 68%, mp: 98–100 °C. IR (KBr): 3438, 3134, 2929, 2859, 1729, 1612, 1561, 1502, 1408 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 8.02 (d, J = 8.0 Hz, 1H, H₄), 7.06 (d, J = 8.0 Hz, 1H, H₃), 7.00 (d, J = 8.0 Hz, 1H, H₅), 7.61 (d, J = 9.5 Hz, 1H, H₆), 6.74 (d, J = 9.5 Hz, 1H, H₇), 4.55 (t, J = 6.0 Hz, 2H, CH₂), 3.98 (t, J = 6.0 Hz, 2H, CH₂), 3.05 (t, J = 5.5 Hz, 2H, CH₂), 2.70 (t, J = 5.5 Hz, 2H, CH₂), 2.39 (quin, J = 6.0 Hz, 2H, CH₂), 1.86 (s, 4H, 2 × CH₂). ¹³C NMR (125 MHz, CDCl₃): 161.4, 160.9, 159.1, 157.4, 150.8, 147.1, 145.5, 143.2, 129.1, 128.9, 127.1, 124.4, 122.8, 119.8, 116.9, 113.4, 112.9, 115.2, 101.6, 64.7, 47.7, 44.3, 32.8, 29.6, 24.5, 22.7, 22.3. Anal. Calcd for C₂₉H₂₈ClN₅O₃: C, 69.84; H, 5.65; N, 14.54. Found: C, 70.06; H, 5.88; N, 14.39.

4.1.2.2. 7-(3-((6-Chloro-1,2,3,4-tetrahydroacridin-9-yl)(amino)methyl)-1H-1,2,3-triazol-1-yl)propoxy)-2H-chromen-2-one (8b). White solid; yield: 51%, mp: 100–102 °C. IR (KBr): 3388, 3171, 2943, 2861, 1724, 1609, 1556, 1507, 1481 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆): 8.16 (d, J = 9.0 Hz, 1H, H₄), 7.96 (d, J = 9.5 Hz, 1H, H₃), 7.94 (s, 1H, triazole), 7.71 (s, 1H, H₅), 7.59 (d, J = 8.5 Hz, 1H, H₆), 7.29 (d, J = 9.0 Hz, 1H, H₇), 6.9 (s, 1H, H₆), 6.87 (d, J = 8.5 Hz, 1H, H₇), 6.27 (d, J = 9.5 Hz, 1H, H₈), 5.93 (t, J = 7.0 Hz, 1H, NH), 4.64 (d, J = 7.0 Hz, 2H, CH₂), 3.98 (t, J = 6.0 Hz, 2H, CH₂), 2.87 (t, J = 5.5 Hz, 2H, CH₂), 2.71 (t, J = 5.5 Hz, 2H, CH₂), 2.22 (quin, J = 6.0 Hz, 2H, CH₂), 1.76 (m, 4H, 2 × CH₂). ¹³C NMR (125 MHz, DMSO-d₆): 161.3, 160.1, 159.5, 155.2, 149.8, 147.4, 147.7, 144.1, 132.3, 129.4, 129.3, 126.7, 125.3, 123.5, 122.8, 118.9, 117.2, 112.5, 112.4, 101.2, 65.0, 46.1, 42.9, 33.4, 29.1, 24.7, 22.4, 22.1. Anal. Calcd for C₂₉H₂₆ClN₅O₃: C, 65.18; H, 5.08; N, 13.57. Found: C, 65.32; H, 5.21; N, 13.39.

4.1.2.3. 7-(3-((7-Chloro-1,2,3,4-tetrahydroacridin-9-yl)(amino)methyl)-1H-1,2,3-triazol-1-yl)propoxy)-2H-chromen-2-one (8c). White solid; yield: 59%, mp: 100–102 °C. IR (KBr): 3414, 3133, 2935, 2870, 1728, 1620, 1550, 1548, 1468 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 7.93 (t, J = 8.5 Hz, 1H, H₆), 7.29 (d, J = 9.5 Hz, 1H, H₇), 6.92 (s, 1H, H₆), 6.87 (d, J = 8.5 Hz, 1H, H₇), 6.24 (d, J = 9.5 Hz, 1H, H₈), 4.66 (d, J = 7.0 Hz, 2H, NHCH₂), 4.55 (t, J = 6.0 Hz, 2H, CH₂), 3.99 (t, J = 6.0 Hz, 2H, CH₂), 2.87 (t, J = 5.5 Hz, 2H, CH₂), 2.17 (t, J = 5.5 Hz, 2H, CH₂), 2.22 (quin, J = 6.0 Hz, 2H, CH₂), 1.76 (m, 4H, 2 × CH₂). ¹³C NMR (125 MHz, DMSO-d₆): 161.4, 160.9, 159.5, 155.2, 149.8, 147.7, 144.1, 132.3, 129.4, 129.3, 126.7, 125.3, 123.5, 122.8, 118.9, 117.2, 112.5, 112.4, 101.2, 65.0, 46.1, 42.9, 33.4, 29.1, 24.7, 22.4, 22.1. Anal. Calcd for C₂₉H₂₆ClN₅O₃: C, 65.18; H, 5.08; N, 13.57. Found: C, 65.32; H, 5.21; N, 13.39.

4.1.2.4. 4-Methyl-7-(3-((1,2,3,4-tetrahydroacridin-9-yl)(amino)methyl)-1H-1,2,3-triazol-1-yl)propoxy)-2H-chromen-2-one (8d). White solid; yield: 48%, mp: 98–100 °C. IR (KBr): 3411, 3134, 2932, 2855, 1708, 1617, 1578, 1511, 1431 cm⁻¹. ¹H NMR (500 MHz, DMSO-d₆): 8.12 (d, J = 8.5 Hz, 1H, H₄), 7.93 (s, 1H, triazole), 7.70 (d, J = 8.5 Hz, 1H, H₅), 7.65 (d, J = 8.5 Hz, 1H, H₆), 7.50 (t, J = 8.5, 1.0 Hz, 1H, H₇), 7.31 (t, J = 8.5 Hz, 1H, H₈), 6.91 (d, J = 2.5 Hz, 1H, H₉), 6.89 (dd, J = 8.5, 2.5 Hz, 1H, H₆), 6.50 (d, J = 7.0 Hz, 2H, NHCH₂), 4.48 (t, J = 6.0 Hz, 2H, CH₂), 3.98 (t, J = 6.0 Hz, 2H, CH₂), 2.88 (t, J = 5.5 Hz, 2H, CH₂), 2.72 (t, J = 5.5 Hz, 2H, CH₂), 2.38 (s, 2H, CH₂), 2.22 (quin, J = 6.0 Hz, 2H, CH₂), 1.77 (m, 4H, 2 × CH₂). ¹³C NMR (125 MHz, CDCl₃): 161.2, 160.1, 158.0, 155.6, 152.3, 150.1, 147.2, 145.8, 128.6, 128.3, 125.7, 124.3, 122.6, 121.6.
120.3, 118.2, 114.0, 112.3, 112.1, 101.6, 64.6, 46.9, 44.2, 33.6, 29.6, 24.7, 22.8, 22.6, 18.5. Anal. Calcd for \(\text{C}_{29}\text{H}_{29}\text{N}_{5}\text{O}_{3} \): C, 70.28; H, 5.90; N, 14.13. Found: C, 70.41; H, 6.08; N, 14.21.

4.1.2.5. 7-(3-(4-(((6-Chloro-1,2,3,4-tetrahydroacridin-9-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)butoxy)-4-methyl-2H-chromen-2-one (8e). Cream solid; yield: 68%, mp 125–127 °C. IR (KBr): 3048, 2955, 2926, 1724, 1619, 1547 cm\(^{-1}\). Anal. Calcd for \(\text{C}_{30}\text{H}_{30}\text{ClN}_{5}\text{O}_{3} \): C, 66.23; H, 5.56; N, 113.1. Found: C, 66.38; H, 5.43; N, 113.3.

4.1.2.0. 4-Methyl-7-(4-(((1,2,3,4-tetrahydroacridin-9-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)butoxy)-4-methyl-2H-chromen-2-one (8f). Cream solid; yield: 61%, mp 60–62 °C. IR (KBr): 3382, 3139, 2926, 2855, 1716, 1613, 1577, 1419 cm\(^{-1}\). Anal. Calcd for \(\text{C}_{30}\text{H}_{30}\text{N}_{5}\text{O}_{3} \): C, 70.58; H, 6.01; N, 13.60. Found: C, 70.17; H, 5.91; N, 13.26.

4.1.2.11. 7-(4-(((6-Chloro-1,2,3,4-tetrahydroacridin-9-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)butoxy)-2H-chromen-2-one (8L). White solid; yield: 68%, mp 134–136 °C. IR (KBr): 3355, 3129, 2932, 2712, 1611, 1547, 1419 cm\(^{-1}\). Anal. Calcd for \(\text{C}_{30}\text{H}_{30}\text{ClN}_{5}\text{O}_{3} \): C, 66.23; H, 5.56; N, 113.1. Found: C, 66.38; H, 5.43; N, 113.3.
CH2), 1.86 (m, 4H, 2 × CH2), 1.77 (quin, J = 6.0 Hz, 2H, CH2). \(^{13}\)C NMR (125 MHz, CDCl3): 161.6, 161.07, 158.8, 155.2, 149.4, 145.4, 145.2, 145.0, 130.0, 128.8, 129.3, 125.5, 121.9, 121.2, 120.5, 118.7, 113.7, 112.3, 112.0, 101.3, 64.4, 49.9, 44.2, 33.6, 27.0, 25.9, 24.5, 22.6, 22.4, 18.3. Anal. Calcd for C$_{30}$H$_{30}$ClN$_{5}$O$_{3}$: C, 67.97; H, 5.50; N, 13.37. Found: C, 67.88; H, 5.50; N, 13.37.

4.1.2.13. 7-((4-(((1,2,3,4-Tetrahydroacridin-9-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)pentyl)oxy)-4-methyl-2H-chromen-2-one (Br). Brown gum-solid; yield: 59%. IR (KBr): 3341, b3129, 2933, 2845, 1724, 1617, 1559, 1491 cm\(^{-1}\). \(^{13}\)C NMR (125 MHz, CDCl3): 161.9, 160.9, 159.9, 155.7, 149.8, 147.8, 147.5, 143.2, 133.9, 128.6, 127.6, 124.6, 124.1, 121.0, 118.9, 118.0, 112.9, 112.6, 112.4, 101.2, 67.8, 50.0, 44.2, 33.9, 29.7, 28.1, 24.5, 22.9, 22.7, 22.5. Anal. Calcd for C$_{31}$H$_{33}$N$_{5}$O$_{3}$: C, 66.23; H, 5.56; N, 12.87. Found: C, 66.11; H, 5.39; N, 12.69.

4.2. AChE and BChE inhibition assay

Acetylcholinesterase (AChE, E.C. 3.1.1.7, Type V-S, lyophilized powder, from electric eel), butyrylcholinesterase (BChE, E.C. 3.1.1.8, from equine serum), acetylcholine iodide (ATCI), butyrylcholine iodide (BTCI) and 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) were purchased from Sigma-Aldrich. Potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium hydroxide and sodium hydroxide carbonate were obtained from Fluka. The solutions of the title compounds were prepared in a mixture of DMSO (5 mL) and methanol (5 mL) and diluted in 0.1 M KH$_2$PO$_4$/K$_2$HPO$_4$ buffer (pH 8.0) to obtain final assay concentrations. All experiments were achieved at 25 °C. Four different concentrations were tested for each compound in triplicate to obtain the range of 20%-80% inhibition for AChE.

To measure in vitro AChE activity, modified Ellman’s method [34, 41] was performed using a 96-well plate reader (BioTek ELx808). Each well contained 50 µL potassium phosphate buffer (KH$_2$PO$_4$ / K$_2$HPO$_4$, 0.1 M, pH 8), 25 µL sample dissolved in 50% methanol and 50% DMSO and 25 µL enzyme (final concentration 0.22 units/µL in buffer). They were preincubated for 15 min at room temperature, then 125 µL DTNB (3 mM in buffer) was added. Characterization of the hydrolysis of ATCI catalyzed by AChE was performed spectrophotometrically at 405 nm followed by the addition of substrate (ATCI 3 mM in water). The change in absorbance was measured at 405 nm after 20 min. The IC$_{50}$ values were determined graphically from inhibition curves (log inhibitor concentration vs. percent of inhibition). A control experiment was performed under the same conditions without inhibitor and the blank contained buffer, DMSO, DTNB, and substrate. The described method was also used for BChE inhibition assay.
4.3. Kinetic studies of AChE and BChE inhibition

For estimates of the inhibition model and inhibition constant Ki, reciprocal plots of 1/V versus 1/[S] were obtained using different concentrations of the substrate. For this purpose, experiments were performed similar to enzyme inhibition assay [34]. The rate of enzymatic reaction was obtained with different concentrations of inhibitor and in the absence of inhibitor. For each experiment, reaction was started by adding substrate and progress curves were recorded at 405 nm over 2 min. Next, double reciprocal plots (1/V vs. 1/[S]) were made using the slopes of progress curves to obtain the type of inhibition. Slopes of these reciprocal plots were then plotted against the concentration of compound in a weighted analysis, and Ki was determined as the intercept on the negative x-axis. All rate measurements were performed in triplicate and data analysis was performed with Microsoft Excel 2003.

4.4. BACE1 enzymatic assay

The BACE1 enzyme inhibition assay was carried out using a FRET (Förster resonance energy transfer) kit, from Invitrogen (former Pan Vera corporation, Madison, WI) according to the manufacturer instructions. BACE1 (purified baculovirus-expressed enzyme) was diluted with the assay buffer (50 mM sodium acetate, pH 4.5) to make a 3X working solution of 1 U/mL. The peptide substrate (Rh-EVNLDAEFK-Quencher) was also diluted with the same assay buffer to provide the 3× solution of stock buffer (750 nM). The inhibitor stock solutions in DMSO were diluted with buffer to provide 3× solution of test compounds at different concentrations. The 3 × solution of BACE1 enzyme (10 mL) and each inhibitor sample (10 mL) were placed in 96-well plates and gently mixed. The substrate 3 × solution (10 mL) was then added to this mixture in each well to start the reaction at the final reaction volume of 30 mL. The final concentration of DMSO in each sample and control wells was equal or less than 6%). The reaction mixtures were incubated at 25 °C for 90 min in the dark and then the reaction was stopped by adding 10 mL of 2.5 mM sodium acetate. Fluorescence was monitored at 544 nm (excitation wavelength) and 590 nm (emission wavelength). OM99-2 was used as a reference inhibitor compound. A multi-well spectrofluorometer instrument (BMG LABTECH, Polar star, Germany) was used for measurements. ICG values were calculated with Curve Expert software version 1.34 for Windows. Each experiment was repeated for three to four times. All data were presented as mean ± S.E.M..

4.5. Neuroprotection assay against Aβ-induced damage

PC12 Cells were grown on monolayer culture on collagen-coated plates at 37 °C in humidified air containing 5% CO₂. Two-thirds of the growth medium was changed every 3–4 days and the cells were subcultured once a week. Evaluation of compound 8e for protecting neuronal PC12 cells against Aβ25-35 induced damage was examined by the MTT assay [35]. Stock solution of Aβ25-35 (0.5 mM) was prepared in distilled water and was diluted in media at a concentration of 55 µM. PC12 cells at a density of 5 × 10⁵ cells/mL (100 mL in each well) were seeded in rat-tail collagen-coated 96-well plates and incubated for 48 h to adhere at 37 °C. Compound 8e at various concentrations was added in triplicate and incubated for 3 h. Human Aβ25-35 was then added at a final concentration of 5 mM. After 24 h, 90 mL of the medium was taken out and 20 mL of MTT (0.5 mg/mL dissolved in RPMI containing phenol red) was added and incubated for an additional 2 h at 37 °C. Afterwards, formazan crystals were solubilized in 200 mL DMSO. The optical density was measured at 570 nm with background correction at 655 nm using a Bio-Rad microplate reader (Model 680, Bio-Rad). Each experiment was repeated 3–5 times. The percentage of protection was calculated: Protection of cells (%) = [(A0 – Aβ)/(100 – A0)] × 100. A0 is the viability % of the cell in the presence of Aβ and compound 8e, Aβ is the viability % of cells in the presence of Aβ and compound 8e considered as 0% protection.

4.6. Molecular docking studies

Molecular docking studies were performed using the Autodock 4.2 program for the most potent anti-AChE compounds 8e, 8h, and 8q. For this purpose, the crystal structure ofTorpedo californica acetylcholinesterase (2CKM) was retrieved from the Brookhaven protein database (http://www.rcsb.org). Subsequently, the water molecules and the original inhibitors were deleted from the protein structure. The 3D structure of the compounds was provided using MarvinSketch 5.8.3, 2012, ChemAxon (http://www.chemaxon.com) and converted to pdbqt coordinate by Autodock Tools (ADT; version 1.5.4). To obtain enzyme. pdbqt, polar hydrogen atoms were added to amino acid residues, Kollman charges were assigned to all atoms of the enzyme using Autodock Tools (ADT; version 1.5.4). All maps were calculated with 0.375 Å spacing between grid points by AutoGrid. The center of the grid box was placed at the center of donepezil with coordinates x = 3.771, y = 63.616, z = 63.737. The dimensions of the active site box were set at 60 × 60 × 60 Å. The docking was carried out with 100 runs using the Lamarckian genetic algorithm (LGA). Other parameters were accepted as default. A cluster analysis was performed on the docking results using a root mean square (RMS) tolerance of 2.0 and the lowest energy conformation of the highest populated cluster was selected for analysis. Graphic visualizations were done by Discovery Studio 4.0 client software.

Moreover, docking simulations for the most potent anti-BChE compounds 8a, 8h, and 8m was carried out by Autodock Vina (AV) 1.1.1 program [36]. The crystal structure of human butyrylcholinesterase (4BDS) was retrieved from Protein Data Bank. Then, the water molecules and inhibitor were removed and enzyme. pdbqt was prepared by Autodock Tools (ver 1.5.4) with default parameters. The selected compounds and their 3D structure were generated by MarvinSketch 5.8.3, 2012 and then ligand.pdbqt was provided by Autodock Tools (ver 1.5.4). The Autodock Vina parameters were set as follow; box size: 60 × 60 × 60 Å, the center of box: x = 135.943, y = 112.748, z = 40.693 (geometrical center of co-crystallized ligand), the exhaustiveness: 10 and the other parameters were left unchanged. The calculated geometries were ranked in terms of free energy of binding and the best pose was selected for further analysis. Molecular visualizations were performed by Discovery Studio 4.0 client software (Accelrys, Inc.,San Diego, CA).

4.7. Learning and memory evaluation by Morris water maze test (MWM)

4.7.1. Drugs

All drugs including scopolamine hydrobromide and donepezil hydrochloride were obtained from Sigma. They were dissolved in saline and the test compound 8e was dissolved in 20% PEG 400 (Polyethylene glycol) as drug vehicle.

4.7.2. Animals

Male albino Wistar rats (200–220 g) were obtained from the Faculty of Pharmacy, Tehran University of Medical Sciences. They were randomly selected to experimental groups. A 12-hrs light/12-hrs dark cycle was kept and provided food and water ad libitum. The room was maintained at the temperature 25 ± 2°C. Our experiments were in agreement with the guidelines of “Institutional Guide for the Care and Use of Laboratory Animals” and were approved by the Ethical Committee for the Care and Use of Laboratory Animals at Tehran University of Medical Sciences.

4.7.3. Morris water maze test

Rats were trained for 4 successive days in a Morris water maze (MWM) apparatus which was a black circular pool with a diameter of...
about 136 cm and a depth of 35 cm. The pool was filled with water and the temperature was kept at 25 ± 2°C. Walls were covered by different shaped visual cues. A circular-shaped invisible platform made of Plexiglass whose diameter is 10 cm was submersed 1 cm below the water surface in the northwest quadrant of the pool (target quadrant). In each trial, rats were randomly released into the water at starting point of a pool quadrant. A camera was installed above the pool and connected to a computer equipped with Ethovision software (Noldus Information Technology, Wageningen, Netherlands) to record the swimming pathway and obtain the related data. Rats were allowed to swim freely maximum for 90 s. If rats did not find the platform during swimming pathway and obtain the related data. Rats were allowed to be noted that the platform in the target quadrant was removed and animals did not receive treatment on test day. However, they were treated for 4 days of training.

4.7.4. In vivo drug treatment

In this study, eleven groups of rats were investigated. All drugs were administered by intraperitoneal injection (IP). The escape latency, traveled distance, swimming speed for first 4 days of trial (training days) and time spent in target quadrant fifth day of trial (probe trial test) were evaluated for all groups.

4.7.4.1. Control group. The control group was given normal saline (5 mg/kg) 30 min prior to testing.

4.7.4.2. Scopolamine group. Scopolamine hydrobromide (4 mg/kg) was administered 30 min before each trial for first 4 days of trials.

4.7.4.3. Vehicle group. 20% PEG 400 (5 mL/kg) was administered to rats30 min before subjecting to the first 4 days of trials.

4.7.4.4. The compound 8e groups (0.3, 0.6, 1.25, 2.5, 5, and 10 mg/kg). The most potent AChEi activity compound (8e) and scopolamine (4 mg/kg) were administered to rats 60 min and 30 min before subjecting to the first 4 days of trials, respectively.

4.7.4.5. Donepezil group (1.25, 2.5 mg/kg). Donepezil and scopolamine (4 mg/kg) were administered to rats 60 min and 30 min before subjecting to the first 4 days of trials, respectively.

4.7.5. Statistical analysis

One-way analysis of variance (ANOVA) followed by Bonferroni and Newman-Keuls multiple comparison tests were used for the comparison of test groups, first 4 days of trials (training days), and post training probe trial test, respectively.

Acknowledgments

This work was supported by grants from the Research Council of Tehran University of Medical Sciences with project No. 94-01-33-28713.

Conflict of interest

All authors declare no conflict of interest.

References

287–298.

