In vitro biological evaluation and molecular docking studies of natural and semisynthetic flavones from *Gardenia oudiepe* (Rubiaceae) as tyrosinase inhibitors

M.D. Santia,b, C. Bouzidic, N.S. Gorodd, M. Puiattid, S. Michelc, R. Grougnetc, M.G. Ortegaa,b,⁎

a Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina

b Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria, X5000HUA Córdoba, Argentina

c Laboratoire de Pharmacognosie, UMR/CNRS 8638, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France

d Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Departamento de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina

ARTICLE INFO

Keywords:
Gardenia oudiepe
Polymethoxylated flavones
Tyrosinase inhibitory activity
Structure-activity relationships
Molecular docking

ABSTRACT

Hyperpigmentation disorders are difficult to treat without causing permanent depigmentation or irritation. The most effective hypopigmenting agents are tyrosinase inhibitors, however some of those currently used have shown serious side effects. As several classes of flavonoids have already demonstrated ability to inhibit tyrosinase, a library of natural polymethoxyflavones isolated (1–7) from the bud exudate of *Gardenia oudiepe* and semi-synthetic derivatives (8,9) were evaluated. IC50 of the most active compounds were in the micromolar range. The strongest inhibitors 1, 2 and 3 all shared a 3′,4′-dimethoxy-5′-hydroxy trisubstituted B ring. These SAR conclusions were confirmed by molecular docking studies. The mode of interaction with the enzyme was elucidated, and important interactions between the most active compounds and catalytic residues of tyrosinase were observed. All of these data provided a library of compounds as potential leaders for the design of new depigmenting agents and formulations.

1. Introduction

Melanin biosynthesis is one of the most important factors in mammal skin color determination. This pigment protects against UV radiation, preventing mutations in cellular DNA, which could cause abnormal conformations in the expression of DNA [1–5]. An overproduction of melanin leads to hyperpigmentary disorders, such as lentigo, ephelides, nevus and other skin diseases. These pathologies result in devastating conditions for many patients, strongly impacting the quality of life [6–8]. Besides, agents currently used to reduce for hyperpigmentation, such as hydroquinone or kojic acid, have undesirable effects such as carcinogenesis, hepatotoxicity, dermatitis [9,10]. Tyrosinase is responsible for the first two steps on melanin synthesis, and could be thus considered as a key-enzyme in the melanogenic cascade [9,11,12]. Flavonoids show a high potential for tyrosinase inhibition [6,11–20] and may be an important source of depigmenting agents. We have recently reported the ability of nine polymethoxyflavones (PMF) isolated and semi-synthesized from the bud exudate of *Gardenia oudiepe* Vieill. (syn. *G. cerifera* S. Moore) to inhibit xanthine oxidase [21]. The potentiality of these compounds to interact in active sites of enzymes drove us to evaluate their monophenolase mushroom tyrosinase inhibitory activity, in order to establish some structure-activity relationships and to elucidate a plausible binding mode through molecular docking studies.

2. Results and discussion

2.1. In vitro tyrosinase inhibitory activity

Nine flavones were evaluated for monophenolase tyrosinase inhibitory activity. 1–7 were natural products isolated from the bud exudate of *G. oudiepe*, 8 and 9 were hemisynthetized from 6 and 7, respectively (Table 1). 1–9 were evaluated at several concentrations on mushroom tyrosinase enzyme, using l-tyrosine as substrate and kojic...
Table 1

<table>
<thead>
<tr>
<th>Substitution pattern</th>
<th>Compound</th>
<th>6</th>
<th>7</th>
<th>3'</th>
<th>4'</th>
<th>5'</th>
<th>IC_{50} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>1</td>
<td>OCH₃</td>
<td>OH</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>OH</td>
<td>(6.71 ± 0.001)²</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>OH</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>OH</td>
<td>(13.20 ± 0.06)²</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>OH</td>
<td>(17.66 ± 0.001)²</td>
</tr>
<tr>
<td>4</td>
<td>OCH₃</td>
<td>OH</td>
<td>H</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>OH</td>
<td>(62.68 ± 0.001)²</td>
</tr>
<tr>
<td>5</td>
<td>OCH₃</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>(73.03 ± 0.22)²</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>(103.56 ± 0.11)²</td>
</tr>
<tr>
<td>7</td>
<td>OCH₃</td>
<td>OH</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>n.d²</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>n.d²</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>n.d²</td>
<td></td>
</tr>
</tbody>
</table>

Positive control: Kojic acid IC_{50} = (12.12 ± 0.001) µM. Media ± SD of at least 3 determinations.

n.d not determined. Inhibition at 100 µM: nd*: (33.9 ± 0.2%), nd**: (19.25 ± 1.0%), nd***: (7.5 ± 0.7%).

² Statistically different respect to kojic acid, p < 0.001.

When comparing the IC_{50} of 1 vs 2 and 2 vs 6, it appears that compounds bearing a methoxy group in position 6 are more active than those which are not substituted on this position. The importance of the presence of an oxygen in C6 had been established for the diphenolase activity of tyrosinase in previous report [19].

Finally, comparison of the IC_{50} values of 2 and 3, and of the inhibitory activity at 100 µM of 7 and 9, respectively, allowed to deduce that compounds bearing a hydroxy group on C7 are slightly better inhibitor than those with a methoxy substitution, in agreement with previous studies [11].

2.3. Molecular modeling studies

Tyrosinase (PDB code: 2Y9W) is found as a tetrameric protein composed of two subunits of ~43 kDa (H subunit) and two subunits of ~14 kDa (L subunit), with a molecular mass of 120 kDa. The H subunit is tyrosinase, while the identity, function, and origin of the L subunit are unknown. The active site is composed of a binuclear copper site, with each copper ion coordinated by three histidine residues and it is located at the heart of two pairs of antiparallel α-helices [23].

In order to establish the interactions leading to the observed structure-activity relationships and to understand the differences in the IC_{50} values of the evaluated compounds, molecular modeling studies were carried out. To do so, in the first place molecular docking calculations were used to build 10 different complexes of each flavone with mushroom tyrosinase (PDB code: 2Y9W), the active site for the docking procedure was defined taking into account the informed by Ismaya et al. [23], for the co-crystallized ligand, tropolone. Finally, a short molecular dynamic simulation of each complex followed by an evaluation of the binding energy [24] was performed in order to select the best complex of each PMF with the enzyme (Supplementary Material, Table S1).

It was found that the more stable complexes were formed with the strongest inhibitors 1–3, with energies values of −31.0, −28.9 and −27.7 kcal/mol, respectively. All these complexes include the B ring toward the binding site (Fig. 2 and Supplementary Material, Fig. S1). On the other side, less stable complexes were found for compounds 4–9, with energies values of −21.5 to −24.5 kcal/mol (Supplementary Material, Figs. S2–S10).

As described above, 1–3 share a common structural B ring. According to this, it was expected that the B ring should be located at the same place in the complexes of these compounds. This was actually observed as the B ring of 1–3 was close to histidine residues 84, 258, and 262 and the copper atoms in the active site of the enzyme (Fig. 2). Nevertheless, the position of the A and C rings was not the same for 1–3, indicating that the substitution or the position of the other part of the molecule, that is not bound to the active site, is also important according to the differences observed for their IC_{50} values (Supplementary Material, Fig. S1).
molecular modeling results has underlined the importance of the B ring substitution pattern to enhance the tyrosinase inhibitory activity of this library of PMFs. The presence of an hydroxy group in position 5′, and two methoxy groups in positions 3′ and 4′ of the B ring is closely related to the B ring (2′,3′-dimethoxy-4′hydroxy) of the isoflavone haginin A, which exhibited an IC50 of 5 μM [25].

When compared to recently published xanthine oxidase inhibitory activity of PMFs [21], IC50, docking data and consequently structure-activity relationships were completely different. Compounds 6 and 5 with a low-hindered 4′-hydroxy-B ring, which showed a weak tyrosinase inhibition, were nanomolar range inhibitors of xanthine oxidase. Thus, despite close structures, PMFs exhibit high level of selectivity towards enzyme target.

3. Conclusion

The monophenolase tyrosinase inhibitory activity of nine PMFs isolated or semisynthetized from Gardenia oudiepe was determined. Compounds 1–3 with a 3′,4′-dimethoxy-5′-hydroxy B ring were the most potent tyrosinase inhibitors. These data were confirmed by molecular docking studies which showed interactions between the substituents of the B ring with catalytically important histidine residues (84, 258 and 262) located in the active site of the enzyme.

These results suggest that the most active compounds could be candidates for the treatment of pathologies involving tyrosinase, particularly socially problematic hyperpigmentation troubles. Moreover, as the PMFs are isolated from bud exudate, a renewable natural source from a Gardenia species easy to cultivate, they may be regarded as new leads for further pharmacomodulation and designing of potent tyrosinase inhibitors, in respect for the environment and sustainable development.

4. Experimental

4.1. Plant material

Aerial parts of G. oudiepe including bud exudates were collected in Forêt Plate, North Province of New Caledonia (October 2008). A voucher specimen is available for consultation under the reference POU-0290 (Herbarium of the Botanical and Tropical Ecology Department of the IRD Center, Noumea, New Caledonia).

4.2. Isolation of flavones 1–6 and 9

1L of dichloromethane was used to dissolve 200.0 g of bud exudates of G. oudiepe. Filtration through a Büchner funnel followed by evaporation of the solvent under reduced pressure provided 52.0 g of exudates without vegetal inclusions. Several steps of silica gel column chromatographic separations (elution with solvents mixture cyclohexane/dichloromethane and dichloromethane/methanol, increasing polarity) enabled the isolation of flavones 1–6 and 9.

4.3. Semi-synthesis of flavones 7 and 8

Compounds 7 and 8 were obtained by stirring 100 mg of 1 and 4, respectively, with dimethyl sulfate (Me2SO4, 4 equiv.) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 2 equiv.) in dried acetone for 1 h at room temperature. After precipitation and washing of the crude with iced water, residues were dissolved in 15 mL of ethyl acetate. Then 3 mL of 1 N HCl were added. Extraction with ethyl acetate (3 times, 10 mL each), washing of the organic phase with a saturated NaCl solution, drying over Na2SO4, paper filtration, evaporation of the solvent under reduced pressure and purification on silica gel (eluent: dichloromethane/methanol, 95/5, v/v) provided 7 and 8 (yield 69% and 71%, respectively).

NMR data of natural and semi-synthetic PMFs were identical to those previously published (for compounds 1 and 4–9 see reference [26]; for compounds 2–3 see Ref. [21], the information is also in the SI).

4.4. Tyrosinase inhibition assay

The assay was performed as previously described [14]. Briefly, the
medium consisting of 0.25 mL of mushroom tyrosinase solution (200 U/mL), and 0.75 mL of the control solution [Na2HPO4 buffer (0.1 M, pH 6.8)] or the sample solution [prepared with each flavonoid 1–9 dissolved in DMSO (final concentration 0.1, v/v) and subsequently diluted to the appropriate concentrations with the above buffer] was mixed and preincubated at 25 °C for 10 min. Then, 0.50 mL of l-tyrosine (1.7 mM, Sigma) solution was added. The absorbance was measured at 475 nm after 20 min of incubation. Kojic acid was used as positive control agent. Each treatment was replicated three times. The percent inhibition of tyrosinase activity was calculated as follows: % inhibition = ([Abscontrol × Abssample]/Abscontrol) × 100, where Abscontrol is the absorbance of the control solution and Abssample is the absorbance of the sample solution.

4.5. Calculations and statistics

All assays were independently performed in triplicate, and results were expressed as media ± SD of three separate experiments. The IC50 values were estimated using the GraphPad Prism 6.0 software on a compatible computer. The results were analyzed by unidirectional analysis of variance (ANOVA) followed by the Tukey test for multiple comparisons using GraphPad Prism 6.0 software.

4.6. Molecular modeling

The complexes between the ligands and mushroom tyrosinase were obtained by molecular docking with the software VINA [27] within the SMINA fork of VINA [28]. The GPU version of Amber14 was used for carrying out molecular dynamics simulations [29,30] and VMD [31] and Maestro [32] were used for the analysis of results and preparation of figures.

The starting coordinates of the protein were taken from Ref. [27], PDB code: 2Y9W. The metal center was parameterized using the tool MCPB.py [33]. Care should be taken when treating copper, since the recommended non-bonded parameters [34] for this metal center did not work properly, and we replaced them by the ones employed by other authors [35–37]. The amberff14SB [38] was employed for the protein residues and the properties of the ligands were obtained by using antechamber [39] with RESP charges [40]. A list with geometries of the ligands is included in the SI.

For the docking two boxes were used, Fig. S11. In a first approximation a big box of (28.0 × 22.5 × 24.0) Å with a grid spacing of 0.325 Å. After these first docking calculations, it was found that the most stable complexes located the inhibitor around the active site, hence a smaller box of (10.0 × 17.0 × 10.0) Å was used to refine the docking search.

After each docking calculation, 9 geometries were obtained and a refinement and recalclulation of the binding energy [24] were carried out for each complex to select the best of each ligand. The refinement consists of two 5000 steps of minimization, one with restrictions in the movement of protein atoms, and the other with restrictions in only the residues of the active site (histidines 60, 84, 93, 258, 262 and 295, cysteine 82 and the cooper center) and the ligand. After the minimization the system was solvated with TIP3P water forming an octahedral box, and then 4 ns of molecular simulations were carried out at 300 K, with only one restriction, the position of the atoms of the Cu center. The simulations were carried out within the PME approximation, implemented in the GPU version of Amber14 [28,29]. An average of the binding energy was calculated by selecting 50 snapshots of the last ns of each simulation by using MMPBSA.py [24] tool within a Generalized Born solvation model [41].

Acknowledgments

This work was supported by ANPCyT BID-PICT 1576, CONICET D32/10, SECYT-Universidad Nacional de Cordoba (05/C375), MINCyT Cha PID 2010. M.D.S. is postdoctoral fellows of CONICET. M.G.O. is member of the Research Career of CONICET. Vincent Dumontet and Cyril Poullain are acknowledged for plant collection and identification. The authors also thank the North Province of New Caledonia for permission of field investigations. All calculations were performed with computational resources from the Centro de Computacion de Alto Desempeño - Universidad Nacional de Cordoba (http://cccad.unc.edu.ar/), in particular the Mendieta Cluster that belongs to the Facultad de Matematica, Astronomia y Fisica, that is also part of SNACD - MinCyT, Republica Argentina.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.biosorg.2018.10.034.

References

[28] Freely available under the GNU Public License v2.0 from < http://smina.sf.net > (last access 12/13/2017).

