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Abstract

Purpose Familial dysautonomia (FD) is a rare autosomal recessive disease that affects the development of sensory and auto-
nomic neurons, including those in the cranial nerves. We aimed to determine whether conventional brain magnetic resonance
imaging (MRI) could detect morphologic changes in the trigeminal nerves of these patients.

Methods Cross-sectional analysis of brain MRI of patients with genetically confirmed FD and age- and sex-matched controls.
High-resolution 3D gradient-echo T1-weighted sequences were used to obtain measurements of the cisternal segment of the
trigeminal nerves. Measurements were obtained using a two-reader consensus.

Results Twenty pairs of trigeminal nerves were assessed in ten patients with FD and ten matched controls. The median
(interquartile range) cross-sectional area of the trigeminal nerves in patients with FD was 3.5 (2.1) mm?, compared to 5.9
(2.0) mm? in controls (P < 0.001). No association between trigeminal nerve area and age was found in patients or controls.
Conclusions Using conventional MRI, the caliber of the trigeminal nerves was significantly reduced bilaterally in patients
with FD compared to controls, a finding that appears to be highly characteristic of this disorder. The lack of correlation
between age and trigeminal nerve size supports arrested neuronal development rather than progressive atrophy.

Keywords Hereditary sensory autonomic neuropathy - Neuroimaging - Autonomic dysfunction - Riley—Day syndrome -
Neuroimaging - Trigeminal nerve

Introduction

Familial dysautonomia (FD), also known as Riley—Day syn-
drome or hereditary sensory and autonomic neuropathy type
I11, is a rare autosomal recessive disease caused by a founder
mutation of the /IKBKAP gene on chromosome 9q31, which
encodes for the elongator-1 protein (ELP-1, also known as
IkB kinase-associated protein or IKAP) [17]. The deficiency
in ELP-1 during embryogenesis affects the development of
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autonomic and sensory neurons with cell bodies in the dorsal
root and cranial nerve ganglia [6, 9, 22].

Hallmark features of the disease are reduced pain and
temperature perception, absent corneal reflexes [7, 12],
reduced basal lacrimation [16], and neurogenic dysphagia
[2, 5, 18, 19]. These are all functions that rely on sensory
feedback from trigeminal nerve afferents, and activities
such as chewing [15], swallowing [13, 19], and speech [8]
remain abnormal throughout life in these patients. Moreover,
reduced facial sensation can result in oral and facial trauma
and self-mutilation [14].

Postmortem neuropathological studies in patients with
FD reveal marked reduction in the size and number of sen-
sory neurons arising from the Gasserian ganglion as well as
absence of myelin sheaths along the mesencephalic tract [3,
20]. There is, however, limited literature on in vivo neuro-
imaging evaluation of patients with FD. Focusing on a major
afferent pathway involved in FD, we used MRI to assess
whether the caliber of trigeminal nerves was reduced com-
pared to age- and sex-matched controls. We hypothesized
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that the caliber of the trigeminal nerve would be reduced in
these patients compared to controls. Small trigeminal nerves
could potentially constitute a novel neuroimaging marker of
this disorder.

Methods
Design and participant selection

This was a single-center cross-sectional study including
patients with genetically confirmed FD who underwent a
neurological clinical assessment and brain MR imaging at
our institution over an 8-year period (2003-2011). A com-
prehensive review of their clinical charts was performed,
with attention to clinical features of trigeminal dysfunction,
including decreased corneal sensation, decreased lacrima-
tion, and neurogenic dysphagia. Age- and sex-matched
control patients were identified by searching consecutively
performed brain MRI exams of subjects undergoing rou-
tine evaluation for the indication of “headache” who were

found to have normal MRI examination. All MRI images
were anonymized and randomized for review. The New York
University Institutional Review Board approved this study.

Neuroimaging

The cross-sectional area of the cisternal portion of the
trigeminal nerves was measured bilaterally in all subjects
using standard T1-weighted magnetization-prepared rapid-
acquisition gradient-echo (MPRAGE) images acquired in the
axial plane [Siemens MAGNETOM Sonata 1.5-Tesla, inver-
sion time (TI) 1100, repetition time (TR) 2100, echo time
(TE) 3.67, flip angle (FA) 7, field of view (FoV) 220 x 220,
matrix size 256 X 218]. Source data centered at the level of
the cisternal trigeminal nerve were used to prescribe 1-mm
double-oblique reconstructions oriented perpendicular to
the long axis of the nerve (Fig. 1). Region-of-interest (ROI)
measurement was done on the cisternal slice demonstrating
the largest nerve cross-sectional area and placed by two-
reviewer consensus, blinded to subject group.

Fig.1 Trigeminal nerve neuroimaging in familial dysautonomia
and controls. Double-oblique orthogonal reconstructions from 3D
MPRAGE images through the cisternal left trigeminal nerve in a
27-year old patient with familial dysautonomia (a, b) and an age- and
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sex-matched control (¢, d). Note the considerably smaller caliber of
the left trigeminal nerve (arrows) in the patient with familial dysau-
tonomia
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Statistics

A nonparametric Wilcoxon signed-rank test was used to
compare the subject groups in terms of nerve caliber on the
left and right sides and the within-subject average over sides.
Partial Spearman rank correlation characterized the asso-
ciation between nerve caliber and age while controlling for
study group. In an attempt to study the association between
trigeminal nerve caliber and clinical severity, we quantified
the degree of neurotrophic keratopathy (the corneal afferent
information is conveyed by the trigeminal nerve) using the
Mackie classification ranging from 0 (no corneal damage)
to 3 (severe corneal ulcers) [11].

Receiver operating characteristic (ROC) curves for the
mean, minimum, and maximum measurements of left and
right trigeminal nerves were calculated to identify cutoff
values for trigeminal caliber in order to distinguish between
patients with FD and controls. All statistical tests were con-
ducted at the two-sided 5% significance level using Med-
Calc version 17.9.7 software (MedCalc Software, Ostend,
Belgium).

Results

Twenty pairs of nerves from ten patients with FD (seven
women, aged 8-61 years) and ten age- and sex-matched
controls were studied. The body mass index at the time of
neuroimaging acquisition was similar in FD and controls
(23.3+2.8 in FD vs. 25.1 +4.5 kg/m in controls; P=0.28).
All patients with FD had clinical evidence of impaired affer-
ent trigeminal function including diminished corneal reflexes
with keratopathy, reduced basal lacrimation, and neurogenic
dysphagia. The cross-sectional area of the trigeminal nerve
in patients with FD was 3.5+2.1 mm? vs. 5.9+2.0 mm? in
the control group (median + interquartile range, P=0.002)
(Fig. 1) Significant differences were also seen between
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patients and controls when analyzing the left and right nerve
subgroups separately: on the left, 3.0+2.1 mm? compared
t0 6.0+ 1.6 mm? (FD vs. controls, P =0.0059), and on the
right, 4.2+ 1.4 mm? vs. 5.8 +3.4 mm? (FD vs. controls,
P=0.0039), respectively (Fig. 2). There was no association
between trigeminal caliber and age while controlling for
study cohort (p=0.09, P=0.72).

The neurotrophic keratitis stage of patients with FD
ranged from 1 to 3. Higher scores were significantly asso-
ciated with smaller areas of the right side (p=-0.72,
P=0.017) and the average (p=-0.72, P=0.018) trigeminal
nerve. Higher scores tended to be associated with smaller
areas of the left trigeminal nerve, although this did not reach
statistical significance (p =—0.48, P=0.15).

ROC curves for the mean, minimum, and maximum
trigeminal cross-sectional areas had an area under the
curve (AUC) value of 0.99 [95% confidence interval (CI)
0.81-1.01, 0.97 (95% CI 0.78-1.0), and 0.97 (95% CI
0.78-1.0), respectively. A cross-sectional area <4.85 mm?>
had 100% sensitivity and 90% specificity, and area
<4.42 mm? had 90% sensitivity and 100% specificity to
distinguish between FD and controls.

Discussion

This study shows that the cross-sectional area of the cis-
ternal trigeminal nerve as measured on routine MRI was
significantly smaller bilaterally in patients with FD com-
pared to age- and sex-matched normal controls. Bilateral
reduction in trigeminal caliber appears to be a highly charac-
teristic finding in FD, although validation in larger samples
might be required. This is not surprising, as the disorder is
characterized by impaired development of sensory (affer-
ent) neurons, resulting in sensory and autonomic deficits.
Our results provide objective in vivo evidence supporting
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neuropathological findings of a reduced number of sensory
neurons in the trigeminal ganglia in a few patients with FD
[3, 20, 21].

Trigeminal nerve atrophy follows trigeminal nerve injury,
compression, or denervation, but the findings in these sce-
narios are typically unilateral. Here, we found reduced
caliber on both sides, an imaging finding which may be
highly characteristic of FD.

The lack of correlation between age and nerve size argues
against progressive atrophy and instead supports the the-
ory of arrested afferent neural development of the trigemi-
nal nerve, in keeping with current thinking regarding the
pathophysiology of the disorder. This suggests that trigemi-
nal imaging might not be a suitable outcome measure for
clinical trials of disease modification in FD. The association
between higher degree of corneal damage and lower trigemi-
nal area in the right and the average support the hypothesis
that lack of trigeminal afferences contribute to a lack of
corneal sensitivity in patients with FD. There was a similar
trend with the left trigeminal area, although the lack of sta-
tistical significance might be due to the small sample size.

Limitations of the study include its retrospective nature
and small sample size. However, FD is an extremely rare
disease, with an incidence among Ashkenazi Jews estimated
at 1 in 10,000 in North America [4] and 1 in 3700 in Israel
[10]. Moreover, there is only one previous neuroimaging
study in patients with FD, which enrolled seven patients [1].
Our cohort of ten well-characterized, genetically confirmed
patients with FD with imaging data is a sizable group for
this uncommon disorder and showed a strong statistically
significant difference compared to controls. Further studies
should quantify the diameter of other cranial nerves with
predominantly motor function (e.g., cranial nerves III, IV,
VI, or XII). Normal caliber of motor cranial nerves would
support the notion of FD as a disorder predominantly affect-
ing the development of sensory (afferent) nerves. Advanced
cranial nerve evaluation requires specific MR sequences not
typically used in standard protocols [23].

In conclusion, the trigeminal nerve is significantly smaller
in patients with FD compared to age- and sex-matched con-
trols. The findings are consistent with clinical neurological
deficits as well as neuropathology studies showing a reduced
number of trigeminal ganglion neurons in patients with FD
[3,7,20,21].
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