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Abstract Malignant cell transformation could be considered as a series of cell reprogramming events driven by
oncogenic transcription factors and upstream signalling pathways. Chromatin plasticity and dynamics are critical
determinants in the control of cell reprograming. An increase in chromatin dynamics could therefore constitute an
essential step in driving oncogenesis and in generating tumour cell heterogeneity, which is indispensable for the
selection of aggressive properties, including the ability of cells to disseminate and acquire resistance to treatments.
Histone supply and dosage, as well as histone variants, are the best-known regulators of chromatin dynamics. By
facilitating cell reprogramming, histone under-dosage and histone variants should also be crucial in cell
transformation and tumour metastasis. Here we summarize and discuss our knowledge of the role of histone
supply and histone variants in chromatin dynamics and their ability to enhance oncogenic cell reprogramming and

tumour heterogeneity.
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Introduction

Malignant transformation of normal somatic cells is a
multistep process eventually leading to the selection of
deadly metastasis-prone cancer cells. Within this context,
the molecular mechanisms that generate genetic and
epigenetic heterogeneity are essential to provide the
indispensable ground for the selection of such cells [1].
The selective pressure here operates on genetic/epigenetic
elements [2] to stably support the acquisition of the so-
called cancer hallmarks [3]. The transformation of a normal
cell into a cell with malignant characteristics could
therefore be qualified as an oncogenic reprogramming of
cells.

This process could be compared to the induced cell
reprogramming, first defined by Yamanaka [4], with a
major difference: malignant reprogramming relies on the
aberrant activation of intrinsic reprogramming events [5].
Successful malignant transformation should therefore obey
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to the same laws as those underlying the induced
reprogramming of differentiated somatic cells [6].

Indeed, not only there is a need to activate driver
transcription factors and appropriate cell signalling, but
there is also a requirement to break reprogramming
barriers, mostly of epigenetic nature [7]. Among these
reprogramming barriers important ones are the Suv39H1
enzyme, H3K9 tri-methylation and other factors respon-
sible for heterochromatin formation [8,9].

In addition to the erasure of repressive epigenetic marks,
a critical factor for successful cell reprogramming is
increased chromatin dynamics [10]. Factors capable of
sustaining enhanced chromatin dynamics seem to also
improve cell reprogramming [11]. Chromatin dynamics
could be directly modulated by canonical replication-
dependent histones through the control of their assembly
during DNA replication, as well as through induced
histone degradation and histone under-dosage or indepen-
dently, through the assembly of a specific class of histone
variants [12—16].

Regulated replication-dependent nucleosome assembly
is in fact an important element in defining the dynamic
states of chromatin. Accordingly, two studies based on
interference with CAF1 activity, a histone chaperone
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required for the replication-dependent chromatin assembly
[17], highlighted the critical role of this factor in
modulating cell reprogramming. Down-regulation of
CAF1 leads to an increased chromatin accessibility, a
shift in the cell gene expression programs and the
acquisition of new characters [18,19].

Histone variants that are tissue-specific or whose
expression depends on specific regulatory signals, also
play their role by conferring specific states to chromatin,
either globally in a particular cell type, or locally on
defined genomic regions. Some of these histones are
associated with more stable and transcriptionally repressed
chromatin such as the H2A variant, macroH2A [20], while
others, in contrast, are associated with unstable nucleo-
somes such as H2A.B.3 and H2A.L.2 in spermatogenic
cells [21,22]. Interestingly, somatic cell reprogramming
assays showed that macroH2A expression is associated
with a resistance to reprogramming [23], while the ectopic
expression of testis/oocyte-specific histone variants of the
H2A and H2B types (THA, TH2B) in fibroblasts, greatly
stimulates the process of reprogramming [24].

All these data highlight the importance of histone
metabolism, histone dosage and histone type synthesis in
the capacity of cells to be reprogrammed. Mechanisms
controlling histone turnover and the expression of histone
variants are largely affected in cancer [25]. More
specifically, cancer cells express almost systematically
tissue-restricted genes [26], among which, genes encoding
histone variants [27] as well as mutated histones known as
“oncohistones” [28].

Here we develop a discussion on the roles of specific
types of histone variants and of histone dosage in cell
epigenetic reprogramming that could be essential for the
establishment of malignant transformation and tumour
heterogeneity (Fig. 1).

Male germ cells express the largest set of
histone variants

In addition to canonical histones that are the building
blocks of nucleosomes, the human genome encodes a
number of histone variants of the H3, H2A and H2B types.
Many of these variants are predominantly or exclusively
expressed in spermatogenic cells [14]. The reason is that
the final stages of male germ cell differentiation involve
one of the most dramatic chromatin remodelling events,
characterized by an almost genome-wide eviction of
histones and their replacement by protamines [29].
Functional, biochemical and structural analyses of these
histone variants showed that many of them present the
ability to generate unstable nucleosomes. This is true for
H3, H2B and H2A variants [14]. Taking into account the
final dismantlement of chromatin in post-meiotic sperma-
togenic cells, before the generation of mature spermatozoa,
one can easily understand why most of these variants
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Fig. 1 Histone-based malignant transformation, tumour heterogeneity
and selection of aggressive characters. Pro-oncogenic events could lead
to aberrant activation of silenced histone variants-encoding genes or
histone assembly defects or histone under-dosage, leading to increased
chromatin dynamics and enhanced genome reprogramming by onco-
genic factors. The resulting heterogeneity would create a window of
opportunity for the selection of newly reprogrammed oncogenic cells
capable of surviving and disseminating.

confer nucleosome instability. Indeed, a more open and
dynamic chromatin should lower the energy supply
required for the genome wide removal of histones.

There are data strongly supporting the idea that most of
these variants are in fact nucleosome-destabilizing ele-
ments. Structural studies of the testis-specific histone H3,
H3T/, showed that both the human and the mouse
members create unstable nucleosomes [30,31]. More
particularly, in H3t, a single amino acid, H42, is critical
to generate a flexible linker DNA at the entry and exit of
the nucleosome [30]. This ability to open the nucleosome
with flexible DNA ends is also shared by several H2A
variants that are expressed at different stages of sperma-
togenesis, namely H2A.B.3 [21] and H2A.L.2 in mouse
[22], as well as H2A.Bbd (H2.B.1 and H2A.B.2) in human
[32]. Finally, the major testis-specific H2B variant, TH2B,
also induces nucleosome instability, especially when it is
paired with TH2A [24,33].

Since nucleosome instability underlies chromatin
dynamics, and that the latter is essential for efficient cell
reprogramming, the question arises on the role of these
histone variants in enhancing cell reprograming. A positive
answer then invites to consider if this histone driven
chromatin dynamics could also induce malignant cell
reprogramming and thereby contribute to tumour hetero-
geneity.

TH2B/TH2A enhances somatic cell
reprogramming

Among the male germ cell histone variants, TH2B and
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TH2A show very particular characteristics, since they act
during two unique periods of the male genome life. At the
time of commitment of male germ cells into meiotic
divisions, these variants accumulate and gradually become
the major nucleosomal H2A and H2B histone types until
their genome-wide eviction and replacement, prior to the
generation of mature spermatozoa [33,34]. Interestingly,
these histone variants also accumulate in maturing oocytes
and are stored until fertilization. Upon removal of
protamines from the male genome, maternal TH2A/
TH2B become again associated with the male genome
[35], and spread over the zygote’s genome at a period
critical for epigenetic programming in pre-implantation
embryonic cells. During later embryonic cell divisions,
TH2A/TH2B are gradually replaced by somatic type H2A/
H2B histones [33,34]. Their presence at two critical
periods of general genome programming, first during the
male germ cell differentiation in preparation of histone-to-
protamine exchange and again during protamine-to-
histone replacement and embryonic cell genome program-
ing, strongly suggests that the properties conferred by these
histone variants to chromatin are of critical importance to
make the genome programmable.

This hypothesis has been actually elegantly confirmed
by Ishii’s group, who showed that the ectopic expression
of TH2B/TH2A in somatic cells strongly enhances
induced pluripotent stem cells (iPS) formation by Yama-
naka factors. Additionally, in the absence of both TH2B
and TH2A (double KO mice), fertilized eggs do not
develop properly, again indicating the importance of these
histone variants in early development [24].

Taking into account the essential role of these two
histone variants in genome reprogramming, we also
hypothesized that their ectopic activation could help
oncogenic cell transformation or create a heterogeneity
among tumour cell populations, which would facilitate the
evolution of cancer cells toward increased aggressiveness.

To test this hypothesis the expression of TH2A and
TH2B was monitored in transcriptomic data available from
several cohorts of cancer patients. Fig.2A shows that in
human both TH2A and TH2B encoding genes are indeed
tissue-restricted genes specifically expressed in testis. The
analysis of a cohort of breast cancers as well as of two
series of lung tumour samples shows that both genes could
become aberrantly active in a subset of tumours (Fig. 2B).
However, these data do not allow us to conclude on a
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Fig. 2 Aberrant activation of testis-oocyte specific TH2A/TH2B in various cancers. (A) Expression of TH2A and TH2B genes in normal human
tissues samples from RNA-seq data, provided by the Genotype-Tissue Expression (GTEXx) project [56]. (B) Expression of TH2A and TH2B genes in
breast and lung cancer samples. Breast cancer RNA-seq data are provided by the TCGA-BRCA project [57]. Lung cancer RNA-seq data are provided
by the NCBI GEO GSE81089 [58], TCGA-LUAD and TCGA-LUSC projects [57]. For all plots, the expression level of genes is represented as a
distribution of log-transformed RPKM values, after addition of a pseudo count of 1 (log2 (1 + RPKM)). Breast cancer: NT Breast= non tumoral
breast; Breast K= breast cancer. Lung cancer: NT Lung= non tumoral lung; L. ADC = Lung adenocarcinoma; L. SQC = Lung squamous cell

carcinoma; other LK = lung tumours of other histological subtypes.
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relationship between the activation of these genes and the
process of oncogenesis. Indeed, in most cases, the tumours
analysed here were harvested long after the initial pro-
oncogenic crisis and the malignant transformation process.
It is therefore likely that a counter-selection against the
expression of both or either of these genes is required for
tumour cells to survive beyond the initial events, with a
stable gene expression program (Fig. 1). In support of this
hypothesis, in the normal frame of TH2A/TH2B expres-
sion, it has been shown that embryonic development is
associated with a sharp decrease in both TH2A and TH2B
in embryonic cells, indicating a requirement for the
silencing of these genes after the initial reprogramming
period. The sporadic expression of these genes in
established cancer cells in tumours would merely be part
of the vestiges of their full activation at the time of
oncogenic transformation.

Short H2A variants

One of the most remarkable characteristics of the canonical
histone H2A is the presence of an acidic patch, which
locates at the surface of nucleosomes and was shown to
mediate the compaction of the chromatin fibre [21,32,36].
The other important contribution of H2A to the nucleo-
some structure is through its C-terminal region, known as
the “docking domain,” involved in the stabilization of H3
a-N helix. The H2A docking domain also contributes to the
stability of the H2A-H2B dimer—H3-H4 tetramer interac-
tion [37]. Indeed, H2A variants with a short docking
domain [38] are unable to form stable histone octamers.
Within a nucleosome, a H2A with a short docking domain
disrupts the ability of the H3 a-N helix to stabilize
nucleosomal DNA and leads to the release of unwrapped
DNA ends [39,40].

Taking into account the ability of the H2A variants to
open and destabilise nucleosomes, it is expected that their
incorporation into nucleosomes should increase chromatin
dynamics and genome reprogramming ability. Unfortu-
nately, however, the role of this category of short H2A
variants in cell reprogramming has not yet been investi-
gated.

Interestingly, although most of the short H2A variants,
including human H2A.Bbd, are testis-specific [38], several
investigations pointed to their contribution to oncogenic
cell programming in specific sets of cancers. Indeed, the
H2A.Bbd-encoding gene was found de-repressed in
Hodgkin lymphoma [41]. The analyses of various Hodgkin
lymphoma cell lines showed that the expression of this
histone variant is remarkably variable [42], suggesting that
the ectopic activation of this gene could have been
important in the process of malignant transformation and
that a counter-selection against its expression operates after
the establishment of the transformed state.

Ectopic testis-specific linker histone
expression as a measure of tumour
heterogeneity

Similar to core histones, linker histones are also encoded
by a variety of canonical replication-dependent as well as
replication-independent and tissue-specific genes [43].

There are testis-specific linker histones named HIT
and HILS1 in human. Here we first verified their tissue-
restricted pattern of expression in human adult tissues.
Fig.3 shows that while, as expected, HIT shows a strict
testis-specific expression, HILS]1 is also expressed in other
tissues such as in muscle (not shown). The questions are
whether the HIT gene could be aberrantly activated in
cancers, whether its activation would reflect tumour
heterogeneity and whether its expression could be
associated with tumour types, sub-types and prognosis.

To answer these questions the expression of HIT was
monitored in breast and lung tumours where the ectopic
activation of genes was observed in a significant number of
tumours (Fig. 3). Since HILS1 did not show the expected
testis-specific expression pattern, its expression in cancer
was not considered. The ectopic activation of HIT, as in
the case of TH2A/TH2B, could be an important event
during malignant transformation and the presence of H1T
in some of the analysed tumours could be a vestige of this
initial oncogenic reprogramming process (and the subse-
quent counter-selection required to stabilize the epigenome
of the established malignant cells).

However, in the case of H1T, this hypothesis remains
highly speculative since, in contrast to the TH2A/TH2B
situation, the role of H1T in genome reprogramming has
not been shown. Therefore additional experimental data on
the reprogramming capacity of H1T and its expression in
oocytes and early development are required to support the
hypothesis.

Linker histone variants and tumour
heterogeneity

Among linker histone variants genes, HI/F(0 encodes
histone H1.0, which presents a differentiation-dependent
expression.

H1.0 is a conserved linker histone present in all
vertebrates, except in birds. The corresponding gene is
also present in some invertebrates such as sea urchin [43].
Interestingly, not only the H1.0 protein shows conserved
features, but also the regulatory circuits that control the
expression of its gene is conserved in different species
[44]. These data highlight the fact that the differentiation-
dependent nature of H1.0 expression is also an evolu-
tionary conserved characteristic of cell differentiation and
hence should probably contribute to the epigenetic stability
of differentiated cells.
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Fig. 3 Aberrant activation of testis-specific HIT in various cancers. Expression of HIT gene in normal (left panel) and tumour (right panels) samples
from RNA-seq data, provided by the GTEx [56], TCGA-BRCA [57] and NCBI GEO GSE81089 [58] datasets. The expression level of genes is
represented as a distribution of log-transformed RPKM values, after addition of a pseudo count of 1 (log2 (1 + RPKM)). Breast cancer: NT Breast =
non tumoral breast; Breast K = breast cancer. Lung cancer: NT Lung = non tumoral lung; L. ADC = Lung adenocarcinoma; L. SQC = Lung squamous

cell carcinoma; other LK = lung tumours of other histological subtypes.

The gene is repressed during early embryonic develop-
ment and in non-differentiated stem cells as well as in
various cancer cell lines but is induced upon the
commitment of cells into differentiation [43]. The study
of established cancer cell lines such as Friend murine
erythroleukemia [45] and murine melanoma cells [46]
showed that the induced differentiation of these cells is
associated with the activation of H1.0-encoding gene.

Additionally, in contrast to other linker histone-encoding
genes, HIF( expression is potently induced by histone-
deacetylase inhibitors in cultured cells in all vertebrates
[43] and in developing embryos in a stage-specific manner
[47-50].

A recent study showed that heterogeneous H1.0
expression in tumour cells directly reflects tumour
heterogeneity, with more differentiated cells expressing
higher levels of H1.0. An absence of H1.0 in tumour cells
correlates with the stem type nature of the cells [51]. The

degree of H1.0 expression could therefore be considered as
a measure of the level of differentiation of tumour cells and
hence reflect tumour aggressiveness. This work also shows
that H1.0 restricts self-renewal and favours differentiation.
These data are in agreement with data we previously
published on H1.0 expression in hepatocytes after partial
hepatectomy. Indeed, the H1.0 content dramatically
decreases after partial hepatectomy corresponding to the
natural reprogramming of hepatocytes and the induction of
cell proliferation [52]. Altogether, these data show that
reprogramming of adult differentiated cells should be
associated with a decrease in H1.0 content, cither in a
physiological setting, after partial hepatectomy, or in the
pathological condition of malignant cell transformation
[51]. In addition, we do not expect the oncogenic
transformation of stem types of cells to be associated
with any change in H1.0 gene expression, since non-
transformed adult stem cells do not express high levels of
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H1.0. However, the induced expression of H1.0 in cancer
cells could reflect the proliferation and differentiation of
malignant stem cells.

Following these data, we analysed the relationship
between HIF(0 gene expression and patient survival data
taking into account published cancer data used by Torres and
colleagues [51], as well as some other cancer transcriptome
series not considered by these authors (Fig. 4).

Unexpectedly, we observe that, in all the considered
cases, HIF(0 expression was lower in normal control
tissues compared to the corresponding cancer series
(Fig. 4). Two additional observations could help explain-
ing this observation. First, the H/F( gene promoter bears
regulatory elements which are shared with the replication-
dependent H4 encoding genes [53]. Second, in cells in
culture, H1F0 shows an increased expression in S phasis
[54]. Therefore, the higher expression of H/F(0 genes in
cancers compared to their non-transformed counter-parts
could actually reflect the presence of proliferative sub-
populations in the considered tumours.

The capacity of the HIF(0 gene promoter to be
responsive to both cell differentiation and cell proliferation
signals could appear contradictory. The higher levels of
HIF0 gene expression in tumour cells compared to their
non-transformed counterparts could be explained by the
higher proportion of proliferative cells in tumours.

Breast cancer (TCGA BRCA)-H1FO Lung cancer (GSE81089)-H1FO

However, taking into account the heterogeneity of H1.0
in a given tumour [51], it can be proposed that, within the
context of proliferative cancer cells, a higher level of
differentiation would lead to an even higher expression of
this gene therefore allowing the identification of less
aggressive more differentiated cancer cells.

However, in contrast to the reported data [51], when we
looked for a correlation between the level of HIF0
expression and survival in a cohort of breast cancer
patients and in three cohorts of patients with lung cancer
and we found no significant association between expres-
sion of HIF(0 and survival probability (Fig. 4).

In conclusion, although a variable expression of H1.0
might be used as a measure of tumour heterogeneity [51],
its level of expression cannot be reliably used as an
indicator of prognosis.

In addition to HI.0, other tissue-restricted linker
histones are also expressed in vertebrates. Birds express
a linker histone known as H5 only in erythrocytes, a gene,
which is probably related to an ancestral H1.0-encoding
gene, uniquely expressed in amphibian erythrocytes [55].
The specific/high expression of H1.0/HS5 in amphibian/
birds erythrocytes is certainly linked to the functional
inactivation of the nucleus in these cells, which in contrast
to mammals, remain nucleated. There are however no data
on the expression of HS and cancer in avian.
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Fig. 4 HIF0 gene expression is activated in different cancers. Expression of H/F0 gene in breast and lung tumour samples with corresponding
Kaplan—Meyer survival curves. Breast cancer RNA-seq data are provided by the TCGA-BRCA project [57]. Lung cancer RNA-seq data are provided
by the NCBI GEO GSE81089 [58], TCGA-LUAD and TCGA-LUSC projects [57]. For all plots, the expression level of genes is represented as a
distribution of log-transformed RPKM values, after addition of a pseudo count of 1 (log2 (1 + RPKM)). Breast cancer: NT Breast= non tumoral
breast; Breast K= breast cancer. Lung cancer: NT Lung= non tumoral lung; L. ADC = Lung adenocarcinoma; L. SQC = Lung squamous cell
carcinoma; L. LCNE = Lung large cell neuroendocrine tumours; L. BAS = Lung basaloid tumours; L. SCC = Lung small cell carcinoma; L. CARCI =
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Discussion

Epigenetic stability is a critical barrier to physiological and
pathological cell reprogramming. The establishment of
specific strategies to induce reprograming in adult
differentiated cells also enabled to highlight the epigenetic
determinants that prevent cell reprogramming. Histone
dosage seems to be an essential barrier in hindering
reprogramming factors’ action. Further investigations
suggest that increased chromatin dynamics could explain
the effect of histone under-dosage and under-assembly in
facilitating reprogramming. Indeed, we know that histone
loss increases chromatin dynamics [13] and increased
chromatin dynamics is associated with enhanced repro-
gramming capacity of the cells [11]. Therefore, histone
assembly defects or histone under-dosage as well as the
expression of specific classes of histone variants should
break the adult cell resistance to reprogramming and
facilitate malignant transformation and tumour cell
heterogeneity.

Here by analysing cancer transcriptomic data we show
that malignant cells express histones that are normally
either expressed in a tissue-restricted manner (H1T, TH2A,
TH2B) or expressed during a particular physiological state
such as differentiation (H1.0). We also show that the
aberrant activation of these genes could give a clear
measure of tumour heterogeneity. Additionally, they may
also functionally impact the cells and facilitate oncogenic
cell reprogramming as they do in reprogramming assays
(TH2A/TH2B).

Taken together we can conclude that, beyond the
specific emerging role of oncohistones [28], the general
concept of histone-driven oncogenesis should be consid-
ered and promises to increase our understanding of
malignant transformation and the molecular basis of
tumour cell heterogeneity.
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